8.5 Selecting the Mth Largest 341

was the smallest) tv (if that element was the largest). One can easily construct
a rank table from an index table, however:

void rank(unsigned long n, unsigned long indx[], unsigned long irank[])
Given indx[1..n] as output from the routine indexx, returns an array irank[1..n], the
corresponding table of ranks.
{
unsigned long j;

for (j=1;j<=n;j++) irank[indx[jll=j;
}

Figure 8.4.1 summarizes the concepts discussed in this section.

8.5 Selecting the Mth Largest

Selection is sorting’s austere sister. ($aat five times quickly!) Where sorting
demands the rearrangement of an entire data array, selection politely asks for a sing
returned value: What is theh smallest (or, equivalently, the = N +1—kth largest)
element out ofV elements? The fastest methods for selection do, unfortunately,<
rearrange the array for their own computational purposes, typically putting all smaller
elements to the left of théth, all larger elements to the right, and scrambling the 3
order within each subset. This side effect is at best innocuous, at worst downright
inconvenient. When the array is very long, so that making a scratch copy of itis taxing=
on memory, or when the computational burden of the selection is a negligible parta.
of a larger calculation, one turns to selection algorithms without side effects, which
leave the original array undisturbed. Sunlplace selection is slower than the faster
selection methods by a factor of about 10. We give routines of both types, below.

The most common use of selection is in the statistical characterization of a se
of data. One often wants to know the median element in an array, or the top an
bottom quartile elements. WheN is odd, the median is thkth element, with
k = (N+1)/2. WhenN is even, statistics books define the median as the arithmetic :
mean of the elements = N/2 andk = N/2 + 1 (that is, N/2 from the bottom
andN/2 from the top). If you accept such pedantry, you must perform two separate
selections to find these elements. Por> 100 we usually defings = N/2 to be
the median element, pedants be damned.

The fastest general method for selection, allowing rearrangemeaat;tit on-
ing, exactly as was done in the Quicksort algorith§8.2). Selecting a “random”
partition element, one marches through the array, forcing smaller elements to th
left, larger elements to the right. As in Quicksort, it is important to optimize the
inner loop, using “sentinels™B.2) to minimize the number of comparisons. For
sorting, one would then proceed to further partition both subsets. For selection,
we can ignore one subset and attend only to the one that contains our debired
element. Selection by partitioning thus does not need a stack of pending operations,
and its operations count scales/dsrather than asV log N (see[1]). Comparison
with sort in §8.2 should make the following routine obvious:

uo edgpwy LIlJON) €2¥.-2/8-008-T |led Io LUO:)'JU'MMM//Zd],lI.]

el

IHAIBSISNI103

e

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apows si ‘1eIindwod 1aalas Aue o} (suo siyy Buipnjoul) saji a|jqepeal

abpu

s1no) Bio

Rouswy yuoN ap

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

342 Chapter 8. Sorting

#define SWAP(a,b) temp=(a);(a)=(b);(b)=temp;

float select(unsigned long k, unsigned long n, float arr[])

Returns the kth smallest value in the array arr[1..n]. The input array will be rearranged
to have this value in location arr [k], with all smaller elements moved to arr[1..k-1] (in
arbitrary order) and all larger elements in arr [k+1..n] (also in arbitrary order).

{

unsigned long i,ir,j,l,mid;

float a,temp; Z8

,temp; g8

cE

1=1; % ©

ir=n; z (_—_T«.

for (5;) { a2

if (ir <= 1+1) { Active partition contains 1 or 2 elements. =3

if (ir == 1+1 && arr[ir] < arr[1]) { Case of 2 elements. Q5

SWAP (arr[1],arr[ir]) 8a

3 =

return arr([k]; g 2

} else {)

mid=(1+ir) >> 1; Choose median of left, center, and right el- NE=)

SWAP (arr [mid] ,arr[1+1]) ements as partitioning element a. Also IB‘ 2

if (arr[l] > arrlir]) { rearrange so that arr[1] < arr[1+1], NS

SWAP(arr[1],arr[ir]) arr[ir] > arr[1+1]. > "2"

} 59

if (arr[1+1] > arr[ir]) { ;8

SWAP (arr [1+1] ,arr[ir]) 3 E|

} =5

if (arr(1] > arr[1+1]) { 82

SWAP(arr[1],arr[1+1]) 2 o

} = %’

i=1+1; Initialize pointers for partitioning. °g

j=ir; 83

’ o

a=arr[1+1]; Partitioning element. % 2

for (5;) { Beginning of innermost loop. =

do i++; while (arr[i] < a); Scan up to find element > a. =e

do j--; while (arr[j] > a); Scan down to find element < a. g 3

if (j < i) break; Pointers crossed. Partitioning complete. é'g_

SWAP(arr[i],arr [j1) g2

} End of innermost loop. G Z

arr[1+1]=arr[j]; Insert partitioning element. ﬁ 3

arr[jl=a; é =

if (j >= k) ir=j-1; Keep active the partition that contains the] 2

if (j <= k) 1=i; kth element. gg

¥ .5

} &%

} g8

28

g9

. o . : : a9

In-place, nondestructive, selection is conceptually simple, but it requires a Iot; S

of bookkeeping, and it is correspondingly slower. The general idea is to pick some§ g
=

number)/ of elements at random, to sort them, and then to make a pass throughg <

. . . - (7]

the arraycounting how many elements fall in each of thd + 1 intervals defined gz
. (<]

by these elements. Theh largest will fall in one such interval — call it the “live” 2

interval. One then does a second round, first pickihgandom elements in the live 3

interval, and then determining which of the new, finef,+ 1 intervals all presently
live elements fall into. And so on, until thegh element is finally localized within a
single array of sizeV/, at which point direct selection is possible.

How shall we pickM? The number of roundsog ,;, N = log, N/ log, M,
will be smaller if M is larger; but the work to locate each element aménhg- 1
subintervals will be larger, scaling dsg, M for bisection, say. Each round

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

8.5 Selecting the Mth Largest 343

requires looking at allV elements, if only to find those that are still alive, while
the bisections are dominated by th&that occur in the first round. Minimizing

O(Nlog,; N) + O(N log, M) thus yields the result

The square root of the logarithm is so slowly varying that secondary considerations
machine timing become important. We use= 64 as a convenient constant value.
Two minor additional tricks in the following routineelip, are (i) augmenting
the set ofM random values by an/ + 1st, the arithmetic mean, and (ii) choosing
the M random values “on the fly” in a pass through the data, by a method that make
later values no less likely to be chosen than earlier ones. (The underlying idea is t
give elementn > M an M /m chance of being brought into the set. You can prove

M ~ 2Vie2 N (8.5.1)

by induction that this yields the desired result.)

#include

#define M 64
#define BIG 1.0e30
#define FREEALL free_vector(sel,1,M+2);free_lvector(isel,1,M+2);

"nrutil.h"

float selip(unsigned long k, unsigned long n, float arr[])
Returns the kth smallest value in the array arr[1..n]. The input array is not altered.

{

void shell(unsigned long n, float all);
unsigned long i,j,jl,jm,ju,kk,mm,nlo,nxtmm,*isel;
float ahi,alo,sum,*sel;

if (k<1 |l k>n || n<=0) nrerror("bad input to selip");
isel=1lvector(1,M+2);
sel=vector(1,M+2);

kk=k;

ahi=BIG;

alo = -BIG;

for (;;) { Main iteration loop, until desired ele-
mm=nlo=0; ment is isolated.
sum=0.0;
nxtmm=M+1;

for (i=1;i<=n;i++) {

Make a pass through the whole array.

if (arr[i] >= alo && arr[i] <= ahi) {

Consider only elements in the current brackets.
mm++;
if (arr[i] == alo) nlo++; In case of ties for low bracket.
Now use statistical procedure for selecting m in-range elements with equal
probability, even without knowing in advance how many there are!
if (mm <= M) sel[mm]=arr[i];
else if (mm == nxtmm) {
nxtmm=mm+mm/M;
sel[1 + ((i+mm+kk) % M)J=arr[i]; The % operation provides a some-
X what random number.
sum += arr[il;

}

}

if (kk <= nlo) { Desired element is tied for lower bound;
FREEALL return it.
return alo;

}

else if (mm <= M) { All in-range elements were kept. So re-
shell (mm,sel); turn answer by direct method.
ahi = sell[kk];

ofe

JS’LUOO'JU'MMM/

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [edlswny 18pio o] ‘pangiyold Apois si ‘1eIindwod 1aaias Aue o1 (suo siyy Buipnjoul) saji a|jqepeal

iy

“(eouaWY YUON 8pIsino) H10°abpLGUIEd @AISSISNI108IIP 0} [feWwa Puas 0 ‘(Auo eauawy YUON) £2t/-2/8-008-T I

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

344

Chapter 8. Sorting

FREEALL
return ahi;
}
sel[M+1]=sum/mm; Augment selected set by mean value (fixes
shell (M+1,sel); degeneracies), and sort it.
sel[M+2]=ahi;
for (j=1;j<=M+2;j++) isell[j]=0; Zero the count array.
for (i=1;i<=n;i++) { Make another pass through the array.
if (arr[i] >= alo && arr[i] <= ahi) { For each in-range element..
j1=0;
ju=M+2;
while (ju-jl > 1) { ...find its position among the select by
jm=(ju+jl)/2; bisection...
if (arr[i] >= sel[jm]) jl=jm;
else ju=jm;
}
isel[jul++; ...and increment the counter.
}
}
j=1; Now we can narrow the bounds to just

while (kk > isell[jl) { one bin, that is, by a factor of order
alo=selljl; m.
kk -= isel[j++];

}

ahi=sel[j];

Approximate timings:selip is about 10 times slower thazelect. Indeed,
for N in the range ofv 10°, selip is about 1.5 times slower than a full sort with
sort, while select is about 6 times faster thasort. You should weigh time

against memory and convenience carefully.

Of course neither of the above routines should be used for the trivial cases o
finding the largest, or smallest, element in an array. Those cases, you code by ha

as simplefor loops. There are also good ways to code the case vihisnmodest in

comparison taV, so that extra memory of ordéris not burdensome. An example

is to use the method of Heapso§B(3) to make a single pass through an array of
length N while saving then largest elements. The advantage of the heap structure
is that onlylog m, rather thann, comparisons are required every time a new element

is added to the candidate list. This becomes a real savings wherO(/N), but

it never hurts otherwise and is easy to code. The following program gives the idea.

void hpsel(unsigned long m, unsigned long n, float arr[], float heap[])

Returns in heap [1. .m] the largest m elements of the array arr[1. .n], with heap[1] guaran-
teed to be the the mth largest element. The array arr is not altered. For efficiency, this routine
should be used only when m < n.

{

void sort(unsigned long n, float arr[]);
void nrerror(char error_text[]);
unsigned long 1i,j,k;

float swap;
if (m > n/2 || m < 1) nrerror("probable misuse of hpsel");
for (i=1;i<=m;i++) heapl[i]=arr[i];
sort (m,heap) ; Create initial heap by overkilll We assume m < n.
for (i=m+1;i<=n;i++) { For each remaining element...
if (arr[i] > heap[1]) { Put it on the heap?

heap[1]=arr[il;
for (j=1;;) { Sift down.

pauqiyold Apos si ‘19Indwod 1aAias Aue 01 (suo siyy Buipnoul) saji a|qepeal

GTTrewa puas Jo ‘(AJuo eauawy YUON) £27/-2/8-008-T |22 10 Wod"Ju mmm//:dny

‘(eauBWY YUON 3pISINo) ﬁJo'eﬁpqueo@/ueslsnome&

2MISOaM ISIA ‘'SINOYAD 10 $00q sadioay [eouawinN Japlo 01
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

8.6 Determination of Equivalence Classes 345

k=j << 1;

if (k > m) break;

if (k !'= m && heap[k] > heaplk+1]) k++;
if (heap[j] <= heap[k]) break;
swap=heap [k] ;

heap [k]=heap[j];

heap[j]l=swap;

j=k;

CITED REFERENCES AND FURTHER READING:
Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), pp. 126ff. [1]

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley).

8.6 Determination of Equivalence Classes

dwod Jan1as Aue 01 (suo siyy Buipnjour) saji ajgepesl

EPlBWY YUON) £27/-2/8-008-T I[€2 10 Woo U mmm//:dny

A number of techniques for sorting and searching relate to data structures whose detai
are beyond the scope of this book, for example, trees, linked lists, etc. These structures a
their manipulations are the bread and butter of computer science, as distinct from numeric
analysis, and there is no shortage of books on the subject.

In working with experimental data, we have found that one particular such manipulation
namely the determination of equivalence classes, arises sufficiently often to justify inclusio
here.

The problem is this: There af¥ “elements” (or “data points” or whatever), numbered

.,N. You are given pairwise information about whether elements are in the sameg
equivalence class of “sameness,” by whatever criterion happens to be of interest. For example
you may have a list of facts like: “Element 3 and element 7 are in the same class; eleme
19 and element 4 are in the same class; element 7 and element 12 are in the same class,
Alternatively, you may have a procedure, given the numbers of two elerjestsl &, for
deciding whether they are in the same class or different classes. (Recall that an equivalen
relation can be anything satisfying tRST properties: reflexive, symmetric, transitive. This
is compatible with any intuitive definition of “sameness.”)

The desired output is an assignment to each ofNhelements of an equivalence class
number, such that two elements are in the same class if and only if they are assigned t
same class number.

Efficient algorithms work like this: Lef'(j) be the class or “family” number of element
j. Start off with each element in its own family, so thi&fj) = j. The arrayF'(j) can be
interpreted as a tree structure, wheéig) denotes the parent ¢f If we arrange for each family
to be its own tree, disjoint from all the other “family trees,” then we can label each family
(equivalence class) by its most senior great-greajrandparent. The detailed topology of
the tree doesn’t matter at all, as long as we graft each related element sorteithere.

Therefore, we process each elemental datynis“equivalent tok” by (i) tracking j
up to its highest ancestor, (ii) trackirigup to its highest ancestor, (iii) givingto £ as a
new parent, or vice versa (it makes no difference). After processing all the relations, we go
through all the elements and reset thei’(5)’s to their highest possible ancestors, which
then label the equivalence classes.

The following routine, based on Knukhl, assumes that there ameelemental pieces
of information, stored in two arrays of length lista,listb, the interpretation being
thatlistal[j] andlistb[j], j=1...m, are the numbers of two elements which (we are
thus told) are related.

%@ &
o11S ST ‘191N

a—"pﬁas 10
-auiyoew Jo BuiAdoo Aue Jo ‘uononpolidal Jayund asn feuosiad umo Jiay) Joy Adod Jaded suo axew 0] s1asn 1oulalul o) pajuelB si uoissiwiad

ip 01 |rew

@@mes@o' al

81ISgaM NISIA ‘SINOHAD 10 s¥00q sadioay [eallswn 1apio o] ‘panuqiyold Ap

‘(eauBWY YUON 3pISINo) @oeﬁpqu

(5-80TEY-TZS-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL :D NI STdIDTY TvOIYINNN woly abed sjdwes

‘aremyos sadioay [eauswnN Aq z66T-886T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-886T (D) WbLAdoD

